
Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

132

Deadlock Revisited: Circular Structures

10	� Deadlock Revisited:
Circular Structures

Some networks cannot be analysed using a client-server labelling

•	 a ring of processes invariably deadlocks
•	 plausible solutions are presented and then discounted
•	 deadlock avoidance strategies are described
•	 an argument is developed that shows that the final system will not deadlock

In previous chapters the concept of a client-server design pattern has been introduced and it has then
been applied to a number of simple examples. The primary requirement of the pattern is that any resulting
network should not contain any circuits of client and server labels. Needless to say, that if we have a ring
of processes then a circuit is inevitable. Hence, we shall investigate a ring of processes to explore how,
even though the client-server pattern cannot be applied, we can construct a system that is deadlock free.

The aim of the application is to construct a message passing structure from one node to another by
providing a set of message passing elements that connect each node to the next. The simplest way of
doing this is to create a ring of message passing nodes to which message sender and receiver processes
are attached. Figure 10-1 shows the basic structure with a client-server labelling that demonstrates
immediately that deadlock will occur, even ignoring the effect of the Sender and Receiver processes. It is
obvious that the set of channels that connect the Ring Element processes has to be broken in some way.
Deadlock will occur trivially when every Ring Element attempts to either input or output a message at
the same time. Thus we have to find a way of breaking the ring

Figure 10-1 The Basic Message passing System

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

133

Deadlock Revisited: Circular Structures

10.1	 A First Sensible Attempt

The simplest way of the breaking the ring of channels connecting the Ring Element processes is to add
another element to the ring which does the input and output operations in a different order to that
undertaken by the Ring Elements. This will mean that there is at least one element on the ring that is
always able to undertake an input operation if all the other Ring Elements are trying to output to the
ring. This is shown in Figure 10-2.

Figure 10-2 Adding the Extra Ring Element

The client-server labelling has not altered and still indicates a problem but we now know that the Extra
Ring Element undertakes its input – output operations in a different order to the Ring Elements. The
behaviour of a Ring Element is shown in Listing 10-1.

10	class RingElementv0 implements CSProcess {
11		
12	 def ChannelInput fromRing
13	 def ChannelOutput toRing
14	 def ChannelInput fromLocal
15	 def ChannelOutput toLocal
16	 def int element
17	
18	 void run () {
19	 def RING = 0
20	 def LOCAL= 1
21	 def ringAlt = new ALT ([fromRing, fromLocal])
22	 while (true) {
23	 def index = ringAlt.priSelect()
24	 switch (index) {

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

134

Deadlock Revisited: Circular Structures

25	 case RING:
26	 def packet = (RingPacket) fromRing.read()
27	 if (packet.destination == element)
28		 toLocal.write(packet)
29	 else
30		 toRing.write (packet)
31	 break
32	 case LOCAL:
33	 def packet = (RingPacket) fromLocal.read()
34	 toRing.write (packet)
35	 break
36	 }
37	 }
38	 }
39	}

Listing 10-1 The Ring Element Process Behaviour (Print Statements Omitted)

A Ring Element alternates over inputs from the ring and from its local sender process {21}. In a loop {22}
it determines the enabled alternative, giving priority to inputs from the ring {23}. An enabled input from
the ring is read {26} as a RingPacket, and if the message is for this element, it is written to the local
receiver {28}, otherwise it is written to the ring {30} for onward transmission. If the enabled alternative
is an input from the local sender then it is read {33} and written to the ring {34}.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

135

Deadlock Revisited: Circular Structures

The behaviour of the Extra Ring Element is shown in Listing 10-2.

10	class ExtraElement implements CSProcess {
11
12	 def ChannelInput fromRing
13	 def ChannelOutput toRing
14	
15	 void run () {
16	 def packet = new RingPacket (source:-1, destination:-1,
17							 value:-1, full: false)
18	 while (true) {
19	 toRing.write(packet)
20	 packet = (RingPacket) fromRing.read()
21	 }
22	 }
23	}

Listing 10-2 The Behaviour of the Extra Ring Element (print Statements Omitted)

Given that the Ring Elements initially input from the ring, or local Sender process then the Extra Ring
Element has to output a packet, so that a Ring Element has a packet to read. A RingPacket is defined
{16, 17} which is then written to the ring {19}. Thereafter the process simply reads a RingPacket from
the ring {20} and then outputs it to the ring {19}. The empty packet will continue to circulate forever.

10.1.1	 Evaluation

The accompanying examples package contains a version of this first attempt c10.examples.Runv0.
groovy that has print statements inserted within it to show the effect of this solution formulation. The
user is able to indicate the number of nodes in the network when the system is executed. The messages
received by each receiver process are displayed using a GConsole process. A network with 4 nodes will
additionally have the extra node numbered as node 0. The output changes with each execution of the
network but seldom terminates, though on occasion it has terminated. In a 4 node system each node
should receive 3 messages from each of the other nodes, that is, each should receive 9 messages. Typically,
no node receives all its messages and some nodes receive no messages. Inspection of the system console
print messages indicates that the extra node does indeed output its empty packet and that this is read by
the next node in the ring. This means that the other nodes have no input on their ring input channels
and so they read a message from their local sender process. The sender processes attempt to send their
messages as quickly as possible. This then has the effect of sending many messages on to the ring, which
at some stage may deadlock when every node, including the extra node attempt to undertake an input or
an output operation. Just when this occurs depends on the particular execution sequence. It is obvious
that we have to find a way of managing the number of messages in the ring.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

136

Deadlock Revisited: Circular Structures

10.2	 An Improvement

A simple improvement can be seen quite easily. If a node sends a message to another node on behalf
of its local node then the receiving node undertakes to send a message back to the original source that
the message has been read. This means that each node can only ever have one packet on the ring at
any one time. On the first part of its journey it contains the desired message and then once it has been
processed by the destination node it is returned with an empty flag. The definition of the RingPacket
used to send messages around the system is shown in Listing 10-3. The property source {12} gives
the number of the node that sent the message and destination {13} is the node to which it is to be
sent. The actual message is contained in the property value {14} and the Boolean full {15} indicates
whether the packet contains a message or is just an empty packet. A toString method is provided to
enable printing of the packet on the console window and also on the GConsole processes.

10	class RingPacket implements Serializable, JCSPCopy {
11		
12	 def int source
13	 def int destination
14	 def int value
15	 def boolean full
16	
17	 def copy () {
18	 def p = new RingPacket (source: this.source,
19						 destination: this.destination,
20						 value: this.value,
21						 full: this.full)
22	 return p
23	 }
24
25	 def String toString () {
26	 �def s = "Packet [s: ${source}, d: ${destination}, v: ${value}, f: ${full}] "
27	 return s
28	 }
29	}

Listing 10-3 The RingPacket Class definition

A first running, c10.examples.Runv1.groovy, of this modification typically results in even worse
performance than the initial version. On reflection this is obvious. The Extra Ring Element process still
outputs an empty packet onto the ring and thus there will be no space for the messages to rotate around
the ring. The solution is to modify the Extra Ring Element process so that it provides an empty space
on the ring of nodes so that a communication can take place. This behaviour is shown in Listing 10-4.
This does mean that the Extra Ring Element has to read {17} and then write {18} a packet, the same as
all the other nodes.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

137

Deadlock Revisited: Circular Structures

10	class ExtraElementv1 implements CSProcess {
11		
12	 def ChannelInput fromRing
13	 def ChannelOutput toRing
14	
15	 void run () {
16	 while (true) {
17	 def packet = (RingPacket) fromRing.read()
18	 toRing.write(packet)
19	 }
20	 }
21	}

Listing 10-4 The Modified Behaviour of The Extra Ring Element (Print Statements Omitted)

The execution of c10.examples.Runv1a.groovy now results in the proper operation of the network
with all Receivers getting and outputting the expected messages. The solution does however have some
limitations in that only one packet is ever in circulation for each node as shown in the behaviour given
in Listing 10-5.

The solution uses an alternative with pre-conditions to control the input of messages either from the ring
or from the local sender {19–24}. Initially, messages can be input either from the ring or from the local
sender {23, 24}. The index of the enabled alternative is determined using a select method call {26}.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

138

Deadlock Revisited: Circular Structures

For messages read from the ring {29}, it is first determined whether the message has its destination
at this element {30}. It is then necessary to determine whether or not the packet is full {31}.

10	 class RingElementv1 implements CSProcess {
11	
12	 def ChannelInput fromRing
13	 def ChannelOutput toRing
14	 def ChannelInput fromLocal
15	 def ChannelOutput toLocal
16	 def int element
17	
18	 void run () {
19	 def RING = 0
20	 def LOCAL= 1
21	 def ringAlt = new ALT ([fromRing, fromLocal])
22	 def preCon = new boolean[2]
23	 preCon[RING] = true
24	 preCon[LOCAL] = true
25	 while (true) {
26	 def index = ringAlt.select(preCon)
27	 switch (index) {
28	 case RING:
29	 def packet = (RingPacket) fromRing.read()
30	 if (packet.destination == element) {
31		 if (packet.full) {
32			 toLocal.write(packet.copy())
33			 packet.destination = packet.source
34			 packet.source = element
35			 packet.full = false
36			 toRing.write(packet)
37		 }
38		 else
39			 preCon[LOCAL] = true
40	 }
41	 else
42		 toRing.write (packet)
43	 break
44	 case LOCAL:
45	 def packet = (RingPacket) fromLocal.read()
46	 toRing.write (packet)
47	 preCon[LOCAL] = false
48	 break
49	 }
50	 }
51	 }
52	}

Listing 10-5 The Ring Element That Expects A Returned Empty Packet (Print Statements Omitted)

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

139

Deadlock Revisited: Circular Structures

If the packet is full then we can write a copy of the packet to the local receiver process {32}. After which
we can update the content of the packet for its return journey to its originating node, because a copy
was written to the local receiver process. The destination and source properties of the packet are
updated accordingly {33, 34}, the packet.full indication is set false {35} and the revised packet
written to the ring {36}. If the received packet is not full {38} then this is a returned packet and the
ring element process can now input a message from its local sender, requiring an update to the associated
pre-condition {39}.

If the initial packet was not destined for this node element {41} then it is simply written to the ring {42}.

Messages read from the local sender process {45} are immediately written to the ring {46} and the pre-
condition controlling input from the local sender is set false {47}. As described above, this pre-condition
will only be set true, when the returned empty packet has been received.

10.2.1	 Evaluation

This solution, though functional, does still have some performance limitations in that an element has
to wait for a sent packet to be returned before the next message can be sent. This means that on average
half the network is filled with empty packets. The next solution removes this restriction by allowing the
reuse of an empty packet if a node is ready to send a message from its local sender process.

10.3	 A Final Resolution

The behaviour shown in Listing 10-6 shows the behaviour modification required to use an empty packet,
as it passes through a node that is ready to output a local message.

10	class RingElementv2 implements CSProcess {
11	
12	 def ChannelInput fromRing
13	 def ChannelOutput toRing
14	 def ChannelInput fromLocal
15	 def ChannelOutput toLocal
16	 def int element
17	
18	 void run () {
19	 def RING = 0
20	 def LOCAL= 1
21	 def ringAlt = new ALT ([fromRing, fromLocal])
22	 def preCon = new boolean[2]
23	 preCon[RING] = true
24	 preCon[LOCAL] = true
25	 def emptyPacket = new RingPacket (source: -1, destination: -1 ,
26								 value: -1 , full: false)
27	 def localBuffer = new RingPacket()

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

140

Deadlock Revisited: Circular Structures

28	 def localBufferFull = false
29	 toRing.write (emptyPacket)
30	 while (true) {
31	 def index = ringAlt.select(preCon)
32	 switch (index) {
33	 case RING:
34	 def ringBuffer = (RingPacket) fromRing.read()
35	 if (ringBuffer.destination == element) {
36	 toLocal.write(ringBuffer)
37	 if (localBufferFull) {
38		 toRing.write (localBuffer)
39		 preCon[LOCAL] = true
40		 localBufferFull = false
41	 }
42	 else {
43		 toRing.write (emptyPacket)
44	 }
45	 }
46	 else {
47	 if (ringBuffer.full) {
48	 toRing.write (ringBuffer)
49	 }
50	 else {
51		 if (localBufferFull) {
52		 toRing.write (localBuffer)
53		 preCon[LOCAL] = true
54		 localBufferFull = false
55	 }
56	 else {
57		 toRing.write (emptyPacket)
58	 }
59	 }
60	 }
61	 break
62	 case LOCAL:
63	 localBuffer = fromLocal.read()
64	 preCon[LOCAL] = false
65	 localBufferFull = true
66	 break
67	 } // end switch
68	 }
69	 }
70	}

Listing 10-6 The Final Ring Element Process (Print Statements Omitted)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

141

Deadlock Revisited: Circular Structures

The setup of the preconditions and the alternative are the same as the previous version {19–24}. An
emptyPacket is defined {25, 26} as is a buffer {27} to hold messages from the local sender process.
A Boolean flag, localBufferFull {28} is used to signify whether or not the localBuffer is full.
The first action each RingElement node undertakes is to output an emptyPacket {29}, which has
the effect of initialising the system. In general, this initial empty packet will only pass as far as the next
node, which by then will have input a message from its local sender and will thus be able to use this
empty packet. The extra element has the revised behaviour given in Listing 10-4. As before, the index
of the enabled alternative is determined {31) and the appropriate case selected {32}.

If the selected alternative is to read an input packet from the local sender process {62} this is read
into the localBuffer {63}, the pre-condition flag for this alternative is set false {64} and the
localBufferFull flag set true{65}. This does not cause the packet to be written to the ring, merely
to get it ready to be written.

If the selected alternative relates to an input from the ring then the message packet is read into a ringBuffer
{34} and the subsequent processing is determined by the state of that message. If the destination of the
message is for this node {35} then the message is written to the local receiver process {36}. This means that
the node can output the localBuffer to the ring if it is full and update the flags associated with the buffer
{37–40}; otherwise an emptyPacket is written to the ring {43}. If the ringBuffer does not have this node
as its destination {46} then if the ringBuffer is full it is simply written to the ring {47–48}, otherwise
the localBuffer is processed in the way described previously {51–58}.

LIGS University
based in Hawaii, USA

▶▶ enroll by October 31st, 2014 and

▶▶ save up to 11% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

142

Deadlock Revisited: Circular Structures

10.3.1	 Evaluation

This final version has resulted in a solution that routes messages around a circular network, which is
inherently prone to deadlock. This version does not suffer from the drawbacks of the previous solution
in that an empty packet only travels around the network until it comes to a node that needs to send a
message from its localBuffer to another node. An argument has been presented that explains why
deadlock will not occur because client-server labelling does not provide a categorical solution and
furthermore indicates that deadlock will occur.

10.4	 Summary

This chapter has analysed a set of processes that inherently tend to deadlock. Two algorithms have been
developed that overcome the problems. The benefit of one solution over the other has been explained,
though this is difficult to measure unless the system is run over a real network, where each Ring Element
process can be placed on a specific processor of that network.

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

